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ABSTRACT$\7 Mode-I crack growth in an elastic perfectly-plastic material
under conditions of generalized plane stress has been investigated. 1In
the plastic loading zone, near the plane of the crack, the stresses and
strains have been expanded in powers of the distance, y, to the crack
line. Substitution of the expansions in the equilibrium equations, the
yield condition and the constitutive equations yields a system of simple
ordinary differential equations for the coefficients of the expansions.
This system is solvable if it is assumed that the cleavage stress is
uniform on the crack line. By matching the relevant stress components
and particle velocities to the dominant terms of appropriate elastic
fields at the elastic-plastic boundary, a complete solution has been
obtained for"ey in the plane of the crack. The solution depends on
crack-line position and time, and applies from the propagating crack

tip up to the moving elastic-plastic boundary. Numerical results are

presented for the edge crack geometry. < &

E&")J >

KEY WORDS: crack propagation, Mode-I, elastic-perfectly-plastic

behavior, strain on crack line. Necesaion For i
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Introduction

Quasi-static fields of stress and deformation near the tip of a
growing crack in an elastic perfectly-plastic material, have been
discussed in considerable detail by Rice [l]. Analytical expressions
for the near-tip fields reveal the asymptotic structure of the fields in
the immediate vicinity of a moving crack tip. They contain, however,
functions that can generally be obtained only by supplemental numerical
procedures. The one complete analytical solution, which is for the
case of anti-plane strain, has been given by Rice [2].

In a recent paper Achenbach and Dunayevsky [3] considered the case
of Mode-I crack growth under plane stress conditions in an elastic
perfectly-plastic material. In Ref.[3] it was assumed that the stress
components for a centered fan field, which were discussed by Hutchinson (4],
and which satisfy the yield condition and the equilibrium equations, are
valid up to the elastic-plastic boundary (at least near the crack line).
The analytical approach of Ref.[3] then employs expansions of the particle
velocities in powers of y (the distance from the plane of the crack), to
obtain ordinary differential equations with respect to x for the co-
efficients in the expansions. Functions of time that enter in integrating
these equations were determined by matching the fields in the plastic
loading zone to the dominant terms of suitable elastic fields at the

elastic-plastic boundary.
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In the present paper we reconsider the results of Ref.[3].

Instead of making an a-priori assumption on the stress field, we also
write expansions for the stresses near the crack line. Substitution
of these expansions into the equilibrium equations and the yield
condition produces a simple system of equations for the coefficients.
Unfortunately the system is not closed, and additional information is
required. The structure of the equations suggests that the cleavage
stress on the crack line is uniform. With that assumption, the system
of equations can be solved in a simple manner. The resulting expressions
for the stresses are consistent with the centered fan field employed
in Ref.[3].

To illustrate the analytical results the plastic strains just
ahead of a moving crack tip have been computed for an edge crack
geometry. The results are particularly suited for use in conjunction

with a critical strain criterion.
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Governing Equations

The geometry that is being considered in this paper is shown in
Fig. 1. The x3-axis of a stationary coordinate system is parallel to

the crack front, and x, points in the direction of crack growth. The

1
position of the crack tip is defined by x1 = a(t). A moving coordinate
system, X,y,z is centered at the crack tip, with its axes parallel to
the X)X, and X, axes. Relative to the moving coordinate system we also
define polar coordinates r,6, with 6 = 0 coinciding with the positive

x direction.

In the moving coordinate system the equilibrium equations are

aox 3T arx 30
i et S (1a,b)

We consider a state of generalized plane stress, hence 95 G and o
vanish identically. The Huber-Mises yield criterion may then be

written

02 +02 -00 + 3t2 = 3k? (2)
X y XYy Xy

where k is the yield stress in pure shear. The strain rates are

g 3u . v 5 1,340 , 3v
€ " 3x °* ey 3y ’ exy 2(8y : ax) (3a,b,¢)

In the moving coordinate system the material time derivative is
(") =3, -a3 (4)

$: where 4 = da/dt is the speed of the crack tip. The strain rates

are related to the stresses and stress rates by




........

il o . ik g
— E(ox - Voy) + 3 1\(20x oy)

v _ 1,. c TR

— I -V -_— =

3y E(oy ox) + 3 A(Zoy ox)
130 , 3v 1+v .

2(3y & X E Txy H ATxy

where E and v are Young's modulus and Poisson's ratio, respectively

and A is a positive function of time and the spatial coordinates.

Solution along the Crack Line

In this paper we are irterested in solutions along the crack line
y=0, 0 <x j-xp, where x = xp defines the elastic-plastic boundary.
Such solutions can be obtained by considering expansions with respect

to y in the region y/x << 1l:

Y O L AL

o = po(x,t) + pz(x,t)y2 + p4(x,t)y“ + ...

(it
ey

l.lul

R

= 2 y
ay qo(x,t) + qz(x,t)y + qa(x,t)y + ...

P L

TS
0 Yy e trha

= 3
Txy sl(x,t)y + 83(x,t)y + e

Co

= Go(x,t) + Gz(x,t)y2 * eve

<

= 'fx,t)y + \?B(x,t)y3 + s
A= Ao(x,t) + 1.\2(x,t)y2 C

Here we have taken into account that Oy oy, u and A are symmetric

with respect to y = 0, while oxy’ V are antisymmetric. Substition of
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(8)~-(10) into (la,b) and collecting terms of the same order in y yields

ap

ax

procedure
2 2 _ = 2
P, t 9, -~ P9, = 3k
- g - 2 =
(2p,-q,)p, + (24 -P_)q, + 3s; =0

2 . & 2 - =
p, + (2p-q )p, + q; + (29 -p )9, - P,q,

In the same manner we obtain by using (8)-(13) in (5)-(7)
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17)

Substitution of (8)-(10) into the yield condition (2) yields by the same

(18)
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(22)

(23)
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where (4) has also been used.

At this stage we have 14 unknowns and 12 equations. It turns out

that this system of equations can be solved provided that one assumption
is made. We assume that oy is constant on the crack line in the plastic

loading zone. Hence, by the use of Eq.(9):
q = constant (26)

It will be shown later that the assumption is consistent with the |
stress components for a centered fan field which have been considered by
Hutchinson [4], and which are:

cx = kcos’g, oy = k(2cos’e + 3sin2%6cost), oxy = -ksin’e (27a,b,c)

If g = constant, it follows from Eq.(18) that R constant.

On the basis of P, = constant, it follows from Eq.(14) that s, = 0,

1
and subsequently from Eq.(16) that q, = 0. Substitution of these

results in Eq.(19) yields q, = 2p°, and Eq.(18) then gives P, = k and

: P 2k. Equation (20) subsequently yields A= -p;/Bk. Substitution

of the latter result in Eq.(17) and then in Eq.(1l5) yields
2
3 Py

& d
e g Py (o)

The solution to Eq.(28) which satisfies the condition that the stresses

are multivalued at the crack tip is
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3k
P =" 7%2 (23)
In summary, it has been shown that the equilibrium equations and the
yield condition are satisfied by
. 3 ° Yo
g * k[1 2(x) ) * 0(x) (30)
v 4
oy = 2k + 0(x) (31)
3 5
el >4
b k(x) = 0(x) (32)
It is noted that Eqs.(30)-(31) are indeed expansions with respect to
8 = y/x of Eqs.(27a,b,c).
In the next step we substitute Eqs.(30)-(32) into (21)-(25) and
collect terms of the same order. The result is
3u 3u :
o _ 24 Nk JN 1 %
= 0 ox R e (33)
5 v = Ak (34)
T
%3 v,y
By combining (33),(34) and 35) we obtain
3%y v .
1 1 1 k a
oE. B SET \eep
The general solution to Eq.(36) is
o K o8 Xy BE) 2
vy =g (-2 2 ) + ===+ C(t)x"} , (37
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where xp defines the x-coordinate of the elastic-plastic boundary

o
P

on the crack line. The functions B(t) and C(t) can be obtained

. .
Daod

;8"

from continuity conditions at the elastic-plastic boundary.

1

For small values of 6 (1.e., y/x << 1) the field in the plastic

i
1

loading zone will be matched at the elastic-plastic boundary to the

LELE o L R
ity =13

dominant terms of a corresponding elastic field. For the elastic field

we do, however, not take the field for a crack, but rather that for a

notch with %p as radius 6f curvature at its tip. In polar coordinates

R,y, the appropriate Mode-; stress fields are given by Creager and Paris [ 5]

as

o =(—1--);i Voot s Sintiwsdayfim -2 asadyy (38)

x - \Zmr ) Kgleosyy [U-singd simpyl - 52 cosy ‘
cr=—l--)xs {cl [l+il '3]+L 3} (39)

y <2nR KI osiw 4 n§¢ 51n§w 2R cosiw

]
it | ST S
- '(mz) Kplsingy cospycosyy - op simpy} . )

Note that the tip of the notch, which is not the tip of the crack
nor the elastic~plastic boundary, is a distance %p from the origin E,
as shown in Fig. 1. The center of the elastic field E, whose position

is defined by x, = e(t), yl = 0, is located in between the crack tip

1
and the elastic~plastic boundary defined by x = xp(t). For generalized

plane stress, the displacements corresponding to (38)-(40) are

b

21

l;_ 1, = zl El 1
T KI{COSZ [« = 14+2sin Ew] + cosiw} (41)

u = R
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—L%Lx{11[+1-2 LT SR (42)
v G g Kpleimy [k cos"ov] + p simy
i% where x = (3-v)/(1+v).

From the condition that the elastic field should just reach the
yield condition at the elastic-plastic boundary, we obtain by the use

ot (2) and (38-(40)

[(ZiRpYKJ]Z [“3(%1?;)2] = 3K (43) |

where R = Rp at the elastic-plastic boundary, at least for small

values of y. Another condition is that ox should be continuous at
the elastic-plastic boundary on y=0. By the use of (30) and (38) we

find

,
AT Y

From (43) and (44) it follows that

-3
p

Hence (44) yields
b

3 1l e
(2an) = (46)

—
l.l.l l.l
et hy
SO M |

Equations (43) and (46) show why we have taken elastic fields for a

vy
s
L]

notch rather than for a crack. For an elastic crack-tip field the

Al
.

conditions of reaching the yield condition at the elastic-plastic

biecs

r{t boundary would conflict with the condition of continuity of o> as
b can be checked by setting p = 0 in (43) and (44).
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Further details of the matching procedure have been given by

Achenbach and Dunayevsky [3 ]. The relevant results are

= ! = »@,b
xg (1 Y)xp, and thus Rp Y5, | (47,a,b)

where y = 1/7/2.

B(t) = Blé(t) + Bzip(t) (48)
C(t) = [Ca(E) + Cyk (0)}/[x, ()]’ (49)
where
B, = L L reds phy(eil) | (B/) - 2 (50)
1°- 327 ) 3
B, = 1 L [c45 + 2y (c+1) ] (E/0) (51)
2738 = Y
e B b = (kS 2T b = (52)
1 3252 A e
o= L L o (e+5) + 4y () T (B/W) (53)
L2732 %

The Strain on the Crack Line

In the plane of the crack we have ey = At the elastic plastic

boundary (42) yields for small y

B =t e s (54)

where (46), (47) and 6 ~ y/x have been used. In the stationary

coordinate system, (37) can now be integrated to yield the total

strain for t i.tp as
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E: ey(xl,t) = (ey)PB + _{ vl(xl’s)ds (55)
3 " p

.

5 g3
L g

where v (x »8) is obtained from (37) by using the relation

X = X - a(t). In (55), tp is the time that the elastic-plastic

boundary arrives at position x..

1 Thus, for the propagating crack tip,

tp follows from the equation

a(t ) + {5 ) 3158 56
( p) xp( p) 1 (56)
Here xp(tp) is obtained from the stress intensity factor by using
(46) and (47b):
2/2 1
=4 (t) = =5 7 ¥ (£)/k)? (57)
Equation (37) is also valid for a stationary crack. By setting
a = 0 we obtain from (37) for t Z.tp
.SC 2
(4, t)=—[B/A+CA/x (t)]x(t), (58)
where (48) and (49) have been used and A is a distance ahead
of the crack tip. The arrival time of the elastic-plastic boundary
follows from (56) as
a + xp(tp) =X (59)

Let us consider the case that loading starts at time t = 0,
but that the crack tip does not start to propagate until time t = ts.
For a position X which is inside the plastic zone at time t = ts’ we

find




12

t t
s .[e
.SC .
ey(xl,t:e)== (ey)PB + ft vy (xl,t)ds + . vl(xl,s)ds (60)
P s

Here t follows from (59), and te is the time that the crack tip arrives

at a small distance A from the position x, that is being observed. We

1

have

X, - b= a(te) (61)

For a position X which is outside the plastic zone at time t = te»

x. > a + xp(ts) 3 (62)

1
the expression (55) holds, where tp is now defined by (56).

Equations (55) and (60) can be manipulated to yield the singular

1)

parts of the strain at x, = a(t), plus a bounded integral. The

S

1
result can be found in Ref.[3]. In the present paper the integrals

e

(55) and (60) have been evaluated numerically.

Thé result simplifies considerably for the case that all fields
are assumed to be time-invariant to an observer traveling with the
crack tip. This is the steady-state case when ey depends on x = xl—a(t)
only. Now we have that a = constant = c_, ip =0, and (') = -cp d/dx.

F
The solution to Eq.(37) becomes

dv B. C,x2

—-—1 = E -g. .}-(._ — —l ) 1

el TR R o (63)
P xS
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! where Bl' C

1 are defined by (50) and (52), and xp = constant.

Equation (56) may be integrated to yield

X 1
ke 3

2
%5 e, () = (e)pp + 5 {un(’;—pn - B,

X 3
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Numerical Results

- For a given external load, we presumably know KI in terms of the

crack length a(t). A relation between xp(t) and a(t) can subsequently

be obtained by the use of (57). Hence, in principle, a(t) is the only
unknown quantity in (55). An equation for a(t) and a(t) can, for example,
be obtained from (55) by the use of the critical strain criterion for
crack propagation. This criterion stipulates that crack growth will
proceed when a critical strain level LW is maintained for ey in the
plane of the crack at a characteristic distance A ahead of the crack tip.
It appears, however, that it will be very difficult to solve a(t) and
a(t) from the integral equation that can be extracted from (55).

In the examples that are considered here, we consider an inverse
problem, that is, we prescribe the increasing crack length a(t) and
the variation of the distant tensile stresses o(t), and we use (55)
and (60) to compute the strain at a small distance A ahead of the
crack tip.

Numerical results have been obtained for a material with the
following mechanical properties, which are comparable to those of
CrMnSiNi Steel:

Young's modulus: E = 2.06 x 10*! N/m?

Poisson's ratio: v = 0.3

Yield stress in shear: k = 8.13 x 10° N/m?

Plane stress fracture toughness: K, = 16.7 x 107 N/m?

The geometry considered was an edge crack of initial length

a = 50mm
o
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:%: in a half-plane. The half-plane was subjected to distant tensile
;E stresses of magnitude o(t). The relevant stress intensity factor was
taken as
R, = 1.1215 [ra(t)} %o (t) (65)

The first example attempts to consider a case where the stress

intensity factor varies in such a manner that a steady-state situation

can be established, We choose

T = o
e Srrte Lin

a(t) = ao t :_ts (66a)
=a + al(t-ts) + al{exp[-(t—ts)] -1]} t >t (66b)
and
a(t) = (t/ts)oo t <t (67a)
a° ac t-ts ]%
-lsy eS| o by S £, (67b)
o c 8
ac ¢ ‘
" [m] Oo tc_<_t (67c)
Here oo was taken as the time that KI reaches the value of the
fracture toughness
o, = KC/(1.1215/%'§) ; (68) {

while tc is the time that the crack tip arrives at a distance A from
the position of the elastic-plastic boundary at time t = ts. Thus

tc can be computed from

a(tc) + A= a + xp(ts) (69)

: —
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The length ac was taken as ac = 63.9mm, and the time ts was taken
as t_ = 30s. It follows from (67c) and (65) that KI remains constant
for t > tc. The crack-tip speed a(t) and the distant tensile stress
o(t) have been plotted in Fig. 2a and Fig. 2b, respectively.

The strain ey has been plotted in Fig. 3. The upper curve
represents the strain at a fixed position 4 = lmm ahead of the crack
tip. For t < ts = 30s, this is a fixed position. For t > ts the

position moves with the crack tip. The curves numbered 2-10 represent l

the strains for specific fixed material points. Points 2, 3 and 4

were located inside the plastic zone at time t = ts, and the corres-

ponding strains were computed by Eq.(60 with upper limit t < te' Points 5-10 were

outside the plastic zone at time t = cs, and for these points the
strains were computed by Eq.(55). Curves 2-10all end at a time t,
at which the crack tip is a distance A from the material point. Time
t is computed from Eq.(61). It is noted that the strain quickly
approaches an apparent steady-state value, which is just equal to the
steady-state value that can be computed from Eq.(64). Thus, for the

distant stress given by Eq.(67), stable crack propagation at a

constant strain ey is established quickly.

For the second example we choose

o(t) = (z—)cfo for t < t, (70a)
s

= LA for t > ts s (70b)

where 9, is defined by Eq.(68). The crack starts to propagate with




S i
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constant velocity ¢

at time t = t :
F s

a(t) = a_ for t <t (71a)

= ao + cF(t-tS) for t

|v

s

For three crack-tip speeds, the strains at a location which remains at

a fixed distance of A = 3mm ahead of the crack tip are shown in Fig. 4.
Thus, the location where the strain is computed is stationary for

t j-ts’ and it moves with the crack-tip speed Cp for t > ts. The
strains increase with time, and the rate of change depends significantly

on the crack tip speed.
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